

App Inventor 2

Workbook

Quiz Development

2

Contents

Contents .. 2

Setting up App Inventor .. 3

Creating the Interface: Main Menu ... 4

Creating the Interface: Populate Quiz ... 6

Creating the Interface: Take Quiz .. 8

Creating the Interface: Leader Board .. 10

Creating the Functionality: Main Menu .. 11

Creating the Functionality: Populate Quiz .. 13

Creating the Functionality: Take Quiz ... 17

Creating the Functionality: Leader Board.. 23

Bonus Activities ... 24

Resources .. 25

3

Setting up App Inventor

To start developing our app we need to open App Inventor and create a new project.

1. Go to the App Inventor website:

http://appinventor.mit.edu/explore/

2. Select the Create button in the top right corner of the page:

This will open a new page and ask you to sign in with your Google account. If you don’t have a Google

account, you will need to create one. To do this, go to www.google.com.au and select the Sign In

option in the top right corner, then select the Create Account option.

Once logged in, you will see the main App Inventor 2 account page.

3. Select the New Project… button near the top left corner of the page:

4. Give your project a name, (e.g. Quiz) and press OK.

This will open the application development section. This section is where you design the layout

(Designer) for your app and make it functional (Blocks).

http://appinventor.mit.edu/explore/
http://www.google.com.au/

4

Creating the Interface: Main Menu

Our app starts as a completely blank screen. We will be adding a new screen that will be the Main Menu

screen.

1. Select the Add Screen… button at the top of the screen and name the new screen MainMenu.

The Designer section will now be opened with a blank screen. On the left is the palette of user

interface elements and some background functionality elements.

Spend a small amount of time clicking through each of these sections and explore what’s available.

2. We will be adding three options in our main menu: Take Quiz, Populate Quiz and the Leader Board.

First, we need to add a container to hold all of our elements. Select Layout > VerticalArrangement

and drag this onto your screen. We will make our container to fill the width of the parent and be 400

pixels in height. The Properties should look like:

3. The main elements of our main menu will be an image and three buttons.

Select User Interface > Image and drag this onto your container. Find an image that you like (e.g.

using Google Image Search) and set this to be the Picture in the image. Set the Width and Height to

200 pixels. The Properties should look like:

5

To add the buttons, select User Interface > Button and drag this underneath the image. Do this until

you have three buttons. Rename the first button ‘btnTakeQuiz’, the second button ‘btnPopulateQuiz’

and the third button ‘btnLeaderBoard’. For each of these buttons set the Shape to ‘rounded’, the Text

to ‘Take Quiz’¸ ’Populate Quiz’ or ‘Leader Board’, and the Width to ‘Fill parent…’.

Your screen should now look similar to:

6

Creating the Interface: Populate Quiz

This screen is where we will be creating the quiz questions. To do this we will need two databases for

storing the questions and answers and another database to store the quiz parameters (for e.g. the

number of questions stored). We will also need elements to enter the question and answer and a way to

submit the question.

1. Create a new screen by pressing the Add Screen… button and name this screen PopulateQuiz.

2. Select Layout > VerticalArrangement in the Palette and drag this onto your blank screen. This will

hold all of the interface elements. Change the Width property to Fill Parent… and the Height property

to 400 pixels… . The properties should look like:

3. Select Layout > TableArrangement in the Palette and drag this into the VerticalArrangement. This is

where we will be putting the question and answer interface elements. Keep the Columns and Rows

properties at 2 and change the Width property to Fill Parent… and the Height property to 200 pixels….

The Properties should look like:

Select User Interface > Label and drag this into the first and third cell of the TableArrangement.

Change the Text property to ‘Question:’ and ‘Answer:’.

Select User Interface > TextBox and drag this into the second and fourth cell of the

TableArrangement. Rename each of these TextBoxes to txtPQ_Q and txtPQ_A and change the Width

property to 200 pixels….

7

Select User Interface > Button and drag two buttons into the VerticalArrangement layout, underneath

the TableLayout. Rename these to btnSubmitQ and btnDone and the Text property to ‘Submit’ and

‘Done’. Set the Shape property to rounded and Width to Fill Parent… .

Your screen should look similar to:

4. We will need databases to store the questions, answers and application parameters. We will be using

TinyDB to do this. TinyDB are databases that store data locally, whereas TinyWebDB store data on a

server on the internet.

Select Storage > TinyDB and drag this onto your screen. You will notice the icon disappear and

reappear underneath your screen. Do this until you have three databases. Rename the databases to

DBQuestions, DBAnswers and DBParameters.

Your screen should now look similar to:

8

Creating the Interface: Take Quiz

This screen is where we will be taking the quiz. To do this we will need to access the databases created in

the previous section. We will also need elements to display the question, to allow us to type out the

answer and to submit the answer.

1. Select Screen1 from the Screen dropdown.

2. Select Layout > VerticalArrangement in the Palette and drag this onto your blank screen. This will

hold all of the interface elements. Change the Width property to Fill Parent… and the Height property

to 400 pixels… .

3. Select Layout > Label and drag this onto the VerticalArrangement. Rename this to ‘lblQ’ and set the

Width property to Fill Parent… and the Text to Question.

4. Select Layout > TextBox and drag this underneath the Label in the VerticalArrangement. Rename this

to ‘txtA’ and set the Width property to Fill Parent… .

5. Select Layout > Button and drag this underneath the TextBox in the VerticalArrangement. Rename

this to ‘btnSubmit’ and set the Width property to Fill Parent…, the Shape property to rounded and the

Text property to Submit.

6. We will be displaying a correct (tick) or incorrect (cross) image as the result of the question. We want

to centre the image. To do this, select Layout > HorizontalArrangement and drag this underneath the

Button in the VerticalArrangement. Set the AlignHorizontal property to Center, the AlignVertical

property to Center, and the Width property to Fill Parent… .

Select User Interface > Image and drag this into your HorizontalArrangement. Rename this to

‘imgResult’. Find an image that you like for ‘correct’ and ‘incorrect’ (e.g. using Google Image Search)

and upload this in the Media section. For example, I have used:

Make sure ‘None…’ is selected in the Picture property for the image.

7. Select UserInterface > Button and drag this underneath the HorizontalArrangement in the

VerticalArrangement. Rename this to ‘btnNextQ’ and set the Width property to Fill Parent… , the

Shape property to rounded and the Text property to Next.

8. We need a way to quit the quiz if the user does not want to finish it. Select UserInterface > Button

and drag this underneath the VerticalArrangement. Rename this to ‘btnQuit’. Set the Width property

to Fill Parent… , the Shape property to rounded and the Text property to ‘Quit’. Set the Visible

9

property to Hidden. You will no longer see the button on your screen, but you can still select it in the

Components list.

9. To share the databases with the PopulateQuiz screen, we need to create TinyDB elements with the

same names. Select Storage > TinyDB and drag three of these onto your screen. Rename these to

‘DBQuestions’, ‘DBAnswers’, and ‘DBParameters’.

10. We will be using a notifier to tell the user their final score. Select UserInterface > Notifier and drag

this onto your screen. Rename this to ‘notifier’.

Your screen should look similar to:

10

Creating the Interface: Leader Board

This section is where we will display the score.

1. Create a new screen by pressing the Add Screen… button and name this screen LeaderBoard.

2. Select Layout > VerticalArrangement in the Palette and drag this onto your blank screen. This will

hold all of the interface elements. Change the Width property to Fill Parent… and the Height property

to 400 pixels…

3. Select User Interface > Label in the Palette and drag this onto the VerticalArrangement. Change the

Text property to ‘Leader Board’, tick the FontBold property and change the FontSize property to 18.0.

4. Select Layout > TableArrangement in the Palette and drag this onto the VerticalArrangement. This will

hold the name and score labels. Change the Width property to Fill Parent… and change the Rows

property to 1.

5. Select User Interface > Label in the Palette and drag one into the first and second cell in the

TableArrangment. Rename the first label to lblName and the second label to lblScore. Set the Width

property of lblName to 150 pixels…

6. Select User Interface > Button in the Palette and drag this into the VerticalArrangement, underneath

the TableArrangement. Rename this to btnBack, change the Text property to ‘<< Back’, the Shape

property to rounded and the Width property to Fill Parent… .

7. To get the score from the quiz section, we will be sharing the parameters database. Select Storage >

TinyDB in the Palette and drag this into your screen. Rename this to DBParameters.

Your screen should look similar to:

11

Creating the Functionality: Main Menu

In this section we will be making the main menu functional. To do this we need to change to the Blocks

section. Select Blocks from the top right corner of the page:

On the left in Blocks you will see a list of built-in sections (e.g. Control, Logic, Math, etc) and the elements

that you created for your interface (e.g. btnTakeQuiz, btnPopulateQuiz, etc). These sections are where

you will find all of the programming options.

Take some time to click through the different sections and see what’s available.

1. We want to open the screen for taking the quiz when the user presses the ‘Take Quiz’ button. To do

this, select the btnTakeQuiz > when btnTakeQuiz.Click block and drag this onto to the viewer:

To open another screen, select the Control > open another screen screenName block and drag this in

the btnTakeQuiz.click block:

We need to tell the block the name of the screen to open. Select the Text > “ “ block and place this at

the end of the previous block.

Type ‘Screen1’ into the spot between the quotation marks. Your block should now look like:

12

2. Repeat this for the other two buttons. We want to open the PopulateQuiz screen when the

btnPopulateQuiz button is pressed and the LeaderBoard screen when the btnLeaderBoard button is

pressed.

Your Viewer should now look like:

13

Creating the Functionality: Populate Quiz

In this section we will be creating the functionality for populating the quiz questions. We will be storing

the questions in the question database and the corresponding answers in the answer database. We will

also be keeping track of how many questions were entered.

1. Select the PopulateQuiz screen from the screen dropdown list and ensure you are in the Blocks mode:

2. To keep track of the number of questions we need to create a variable. This will store the number of

questions. Select Variables > initialize global name to from the Blocks list and drag this onto your

blank viewer. We will be calling this variable questionCounter and setting it to 0. You will find the

number option in the Math section. Your block should look like:

3. We want to store the question in the question database and the answer in the answer database when

the user clicks the Submit button. Select the btnSubmitQ > when btnSubmitQ.Click block and drag

this onto the Viewer.

We will be putting all of the blocks for storing the questions and answers inside this block.

4. To store the question select the DBQuestions > call DBQuestions.StoreValue block and place this

inside the button block:

We will need to give the question a unique tag. This identifies the question for later use. Our tags will

be ‘Q1’, ‘Q2’, etc, for each added question. To do this we need to join the Q with the current question

number. Select the Text > join block and attach this to the tag area in the database block:

Select Text > “ “ and drag this into the first join slot. Type in Q. Select the Variables > get name block

and drag this into the second join slot. Select global questionCounter from the dropdown menu in the

get name block. Your block should look like:

14

We now need to store the question that was typed in the text box. Select the txtPQ_Q >

txtPQ_Q.Text block and drag this into the valueToStore slot in the database block:

5. Repeat the same procedure for storing the answer in the answer database. Your block should look

like:

Remember to select the DBAnswers database for the answers, and use an A in the tag!

6. Since we have stored a question, we need to increment the counter. To do this we will be setting the

counter to itself + 1. Select the Variables > set name to block and drag this underneath the database

block in the click block. Set the name to global questionCounter. To add 1 to the counter select the

Math > [] + [] block and drag this into the set global questionCounter to block. This should now look

like:

Select the Variables > get name block and drag this into the first blank square in the addition block.

Select global questionCounter as the name. Select the Math > 0 block and drag this into the second

addition block. Change the value to 1. Your block should look like:

15

7. The final step in this block is to clear the question and answer text boxes. Use the set text and Text

blocks to do this.

Your final block should look like:

8. The final block in this section is for the Done button. This will be selected when the user is finished

populating the questions and answers and will redirect the user to the main menu.

Select the btnDone > when btnDone.Click block and drag this into the Viewer.

Before we redirect the user, we need to store the number of questions. We will be storing this in the

parameters database. Select the DBParameters > call DBParameters.StoreValue block and drag this

into the button click block. This should look like:

Set the tag to ‘NoQs’ and the value to the global questionCounter variable:

The final step is to redirect the user back to the main screen. Select the Control > open another

screen screenName block and drag this into the btnDone.Click block, under the database block. Set

the screenName to “MainMenu” by using the Text > “ ” block. The final block should look like:

16

9. We have now finished the functionality for the PopulateQuiz screen!

Your final blocks for this screen should look like:

You can now put some questions and answers in your quiz!

17

Creating the Functionality: Take Quiz

In this section we will be creating the functionality for taking the quiz. We will be getting a random

question from the question database and checking the users answer to the answer stored in the answer

database. We will also be keeping track of the users score.

1. Select Screen1 from the screen list and ensure that Blocks is selected:

2. We will be using three variables in this screen to store the score, the current question number and the

number of questions seen. Create three variables and call them score, QNo and NoQuestions. Set

score and QNo to 0 and NoQuestions to 1:

If you are unsure where to find these blocks, ask a tutor!

3. Because we will be displaying the question when the screen opens and when we go to the next

question, we will have duplicate code. Whenever this happens we should create a procedure that we

can call later. Select Procedures > to procedure do block, drag this onto the Viewer and name it

displayQuestion:

To randomly select a question from the question database we need to generate a random number.

Select the Variables > set name to block, drag this into the displayQuestion procedure and change the

name to global QNo. We will be setting this to a random integer, found in the Math blocks section:

The random number needs to be between 1 and the number of questions in the database. Previously,

we set and stored this in the Parameters database.

Set the first block to 1 (found in Math). Set the second block to DBParameters > call

DBParameters.GetValue with the tag ‘NoQs’ and the valueIfTagNotThere to ‘1’:

18

To set the question label to the random question, select the lblQ > set lblQ.Text to block and drag this

underneath the set global QNo to block in the procedure. Set this to the random Question by using

the call DBQuestions.GetValue block.

The tag needs to be the random number we previously generated. Use the join block in the Text

section with the global QNo variable. Your block should look like:

The final step in the procedure is to clear the image and the answer text. Use the set

ImageResult.Picture to and the set txtA.Text to blocks to do this.

Your final procedure should look like:

4. We want the first question to appear when the screen appears. Select the Screen1 > when

Screen1.Initialize do block and drag this into the Viewer.

We only want to display a question if the database has already been populated. To do this we will use

an if control block. Select the Control > if then else block and drag this into the screen initialize block:

An if block checks a condition and if it is true, it runs the blocks in the then section, otherwise it runs

the blocks in the else section. We want to check if the variable NoQs has been created and stored in

the Parameters database (this should have been created when a question was added).

19

Select the Math > [] ≠ [] block and drag this next to the if. Select the DBParameters > call

DBParameters.GetValue block and drag this into the first blank of the math block. Check for the NoQs

tag and set the valueIfTagNotThere to 0. Compare this to 0:

If the statement is true, then there are questions in our database and we want to display the first one.

We can do this by calling our procedure for displaying the question (found in Procedures > call

displayQuestion)!

If the statement is not true, then our database has no questions in it and we want to notify the user

and exit to the main menu. We will be using our notifier to do this. Select the notifier > call

notifier.ShowMessageDialog message title buttonText block and drag this into the else section. Type

out a message, title and button caption. Use the close screen block to exit to the main menu.

Your final block should look like:

5. We need to check whether the submitted answer is right or not. This will happen when the user clicks

the Submit button. We will be displaying a tick if the answer is right or a cross if the answer is wrong.

Select the btnSubmit > when btnSubmit.Click block and drag this onto your viewer. First we will hide

the keyboard and hide the submit button from the user. Use the call txtA.HideKeyboard block (found

in txtA) to hide the keyboard and the set btnSubmit.Visible to block (found in btnSubmit) and the

false block (found in Logic) to hide the submit button:

Use the blocks in the Text section to compare the text in txtA.Text to the answer in the DBAnswers

database with the tag for the current QNo. This should look like:

20

If the answer is correct we want to add one to the score variable and set the image to the tick. If the

answer is wrong we want to set the image to the cross.

Set the visibility of the btnNextQ button to true so the user can go to the next question.

Your final block should look like:

6. When the user presses the Next Question button, we need to check if we have reached the maximum

number of questions (we will use 5 for this). If 5 questions have been answered, the user will be

notified, the score will be stored and the screen will change to the main menu. If there are more

questions, the next one will be displayed.

Use the if then block in the Control section to test whether 5 questions have been reached in the

when btnNextQ.Click do block:

Use the notifier and Text blocks to notify the user of their score:

21

Use the DBParameters blocks to store the score and the close screen block in the Control section to

send the user back to the main menu:

After the if then block, we want to ask another question and increment the question counter. Use our

displayQuestion procedure and the Math blocks to add one to the global NoQuestions variable. Set

the btnSubmit button visibility to true and the btnNextQ visibility to false.

Your final block should look like:

7. The final block in this screen will close the screen if the Quit button is pressed:

22

8. We have now finished the functionality for the Take Quiz screen!

Your final blocks for this screen should look like:

23

Creating the Functionality: Leader Board

In this section we will be creating the functionality for the LeaderBoard screen. This is where we will be

displaying the score from the quiz.

1. We want to display the score when the screen initializes. Use the when LeaderBoard.Initialize do

block in the LeaderBoard section:

Change the text of the lblName label to ‘Person’ and the text of the lblScore to the score stored in the

Parameters database:

2. We want to go back to the main menu when the user presses the Back button. Use the when

btnBack.Click do block in the btnBack section and the close screen block in the Control section:

Your final screen should look like:

24

Bonus Activities

If you have finished the previous sections try some of the following activities:

1 Change the look of the screens in Designer mode until you are happy with the

interface, colours, fonts and images.

2 Change the code so that only questions that haven’t been asked already are

selected from the database

3a Use a Clock to time how long it takes the user to finish the questions.

 b Add the clock time to the Leader Board.

4a Create a screen where the user can save their name with their score.

 b Alter the LeaderBoard screen to show multiple users (hint: this may have

to be done in the program with blocks).

25

Resources

There are many resources online for App Inventor. Most can be found on the MIT App Inventor website:

You will find documents about references, tips and troubleshooting at:

The App Inventor team have taken time to integrate some of the tutorials with the curriculum. You will

find these details at:

Note: this may be the curriculum for America, since the team are based in America. However, there still

may be some interesting techniques that could be used in Australia.

There are a lot of tutorials for App Inventor, ranging from games to storage. These can be found at:

http://appinventor.mit.edu/explore/

